Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571555

RESUMO

A six degree-of-freedom (DOF) motion control system for docking with a deep submergence rescue vehicle (DSRV) test platform was the focus of this study. The existing control methods can meet the general requirements of underwater operations, but the complex structures or multiple parameters of some methods have prevented them from widespread use. The majority of the existing methods assume the heeling effect to be negligible and ignore it, achieving motion control in only four or five DOFs. In view of the demanding requirements regarding positions and inclinations in six DOFs during the docking process, the software and hardware architectures of the DSRV platform were constructed, and then sparse filtering technology was introduced for data smoothing. Based on the adaptive control strategy and with a consideration of residual static loads, an improved S-plane control method was developed. By converting the force (moment) calculated by the controller to the body coordinate system, the complexity of thrust allocation was effectively reduced, and the challenge of thrust allocation in the case of a high inclination during dynamic positioning was solved accordingly. The automatic control of the trimming angle and heeling angle was realized with the linkage system of the ballast tank and pump valve. A PID method based on an intelligent integral was proposed, which not only dealt with the integral "saturation" problem, but also reduced the steady-state error and overshooting. Water pool experiments and sea trials were carried out in the presence of water currents for six-DOF motion control. The responsiveness and precision of the control system were verified by the pool experiment and sea trial results and could meet the control requirements in engineering practice. The reliability and operational stability of the proposed control system were also verified in a long-distance cruise.

2.
Front Plant Sci ; 13: 1009747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311118

RESUMO

Temperature is one of the most important factors regarding fruit postharvest, however its effects in the strawberry fruits quality in postharvest remains to be evaluated. In this study, the effects of cold and heat storage temperature on fruit quality of 'Benihoppe' strawberry were performed. The results showed that different temperatures could affect the metabolism of hormone, anthocyanin, reactive oxygen species (ROS), and transcription level of responsive factors. The synthesis of terpenoids, amino acids, and phenylpropanoids in strawberries were also changed under different temperatures, which finally changed the quality characteristics of the fruit. We found HSF20 (YZ1)-overexpressed fruits were sensitive to cold and heat conditions but CBF/NF-Y (YZ9)-overexpressed fruits promoted coloring under cold treatment. This study clarified the effect of postharvest cooling and heat treatments on quality and transcriptional mechanism of strawberries fruits. Moreover, these results provided an experimental basis for further research on improving the quality of strawberry berries during postharvest periods.

3.
Plant Cell Rep ; 41(4): 935-946, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044540

RESUMO

KEY MESSAGE: Hormone treatment enhanced the content of osmotic substances under high-temperature conditions. The effect of ABA and BR treated separately is better than treated together. To determine the effect of abscisic acid (ABA), brassinolide (BR) and ABA + BR on grape quality under high-temperature stress, various metabolites were analyzed. Compared with the control (CK), DL-tryptophan, D-raffinose, geniposidic acid, dodecanedioic acid and polyphenols were found to be higher after ABA treatment. After BR treatment, amino acids and poricoic acid B were higher than in CK. And carbohydrates and amino acids were up-regulated after ABA + BR treatment. BR and ABA + BR treatment also induced higher endogenous ABA and epibrassinolide contents. In addition, treated grape had higher soluble solid concentrations and soluble sugar content, and delayed the degradation of middle lamella and microfibrils. Antioxidant and heat shock-related genes were examined, which significantly increased in treated grape. The finding of this study suggested that ABA, BR and ABA + BR are very useful for alleviating high-temperature damage by increasing the accumulation of osmotic adjustment substances, and endogenous hormones content.


Assuntos
Ácido Abscísico , Vitis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Aminoácidos/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Esteroides Heterocíclicos , Temperatura , Vitis/genética
4.
Front Nutr ; 8: 812666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242791

RESUMO

To determine the effect of different temperature on strawberry after harvest, physiological indicator analysis and proteomics analysis were conducted on ripened strawberry ("Sweet Charlie") fruit stored at 4, 23, and 37°C for 10 or 20 days. Results showed that 4°C maintained a better visual quality of strawberry, and the weight loss and firmness remained stable within 3 days. Low temperature negatively affected anthocyanin but positively affected soluble sugars. Though anthocyanin content was higher with increasing temperature, anthocyanin synthesis related proteins were downregulated. Higher indole-acetic acid (IAA) content in seeds and lower abscisic acid (ABA) content were found in berry at 4°C. Antioxidant related proteins were upregulated during storage, showing a significant up-regulation of peroxidase (POD) at 4°C, and ascorbate-glutathione (AsA-GSH) cycle related proteins and heat shock proteins (HSPs) at 37°C. In addition, overexpressed sugar phosphate/phosphate translocator, 1-aminocyclopropane-1-carboxylate oxidase, and aquaporin PIP2-2 had a positive effect in response to low temperature stress for containing higher protopectin content and POD activity.

5.
Planta ; 252(5): 82, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33040169

RESUMO

MAIN CONCLUSION: Transcriptome and physiological analysis showed that exogenous arginine can delay the ripening process of postharvest strawberry fruit. Arginine (Arg) plays an important role in the growth and development of plants, but its growth and development regulatory mechanisms in strawberry fruit are unknown. In this study, we found that the content of Arg decreased after the onset of fruit coloration and exogenous Arg inhibited fruit coloration. We comprehensively analyzed the transcriptome of 'Sweet Charlie' strawberry fruit with or without Arg treatment and identified a large number of differential genes and metabolites. Based on the transcriptome data, we also found that Arg inhibited ripening, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, Arg content, indole-acetic acid (IAA) content, abscisic acid (ABA) content, and ethylene emissions. We also found that Arg induced the expression of heat-shock proteins (HSPs) and antioxidant enzyme genes, which improved strawberry stress resistance. This study elucidated the molecular mechanism by which exogenous Arg delays strawberry fruit ripening, providing some genetic information to help guide the future improvement and cultivation of strawberry.


Assuntos
Arginina , Fragaria , Frutas , Transcriptoma , Ácido Abscísico , Arginina/farmacologia , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos
6.
Plants (Basel) ; 9(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290080

RESUMO

Triacontanol (TA) is a non-toxic, pollution-free, low-cost, high-efficiency, broad-spectrum plant growth regulator that plays an important role in plant growth and development, but its regulation mechanism of strawberry (Sweet charlie, Fragaria × ananassa Duch.) fruit development is still unclear. In this study, we showed that TA treatment (50 µM) could promote fruit development by up-regulating factors related to fruit ripening-related growth and development. TA increased fruit sugar content and anthocyanin accumulation, and many stress-related enzyme activities. In the meantime, Illumina RNA-Seq technology was used to evaluate the effect of TA treatment on strawberry fruit senescence. The results showed that 9338 differentially expressed genes (DEGs) were obtained, including 4520 up-regulated DEGs and 4818 down-regulated DEGs. We performed gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs. The results showed that TA treatment caused changes in transcript levels related to cellular processes, hormones and secondary metabolism, such as DNA metabolic processes, flavonoid synthesis, and plant hormone signal transduction. Bioinformatics analysis showed that many transcription factors were related to fruit maturity. Taken together, this study will provide new insights into the mechanism of strawberry development and postharvest response to TA treatment.

7.
Chem Commun (Camb) ; 54(6): 674-677, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29303165

RESUMO

A sandwich tungstobismuthate with new topology based on {B-ß-BiW8O30}-cluster and unique 14-nuclear sandwich unit is reported as a high-efficiency visible light-driven water oxidation catalyst containing extended hetero-metal oxygen layer. At optimal conditions, the turn-over number (TON) of the title compound can reach 205.5 with O2 yield of 32.88%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...